An open letter to Scott Morrison: we need a green new deal. Now

Reposted after the original letter published Jan 11, 2020, on Medium

Mark Preston has travelled through the world of the Australian automotive industry to Formula 1 and on to Formula E and autonomous vehicles, constantly considering the future of his favourite subject — cars. The race team he leads — DS TECHEETAH Formula E Team — are the current title holders in Formula E and his StreetDrone business presented autonomous vehicles at the CES Technology world fair this week in Las Vegas.

Dear Prime Minister,

I’m an Aussie who grew up only dreaming about V8’s and going fast, but on my recent visit home from the UK for Christmas, I was shocked by the extent of global climate change as I drove to Sydney and back for New Years celebration by the harbour. My shock was matched by the surprise that while the country burns, our government backs yet more coal mining and gives no thought to the manifest alternatives our country has at its fingertips.

As we drove along the Hume Highway stopping at my childhood tourist stops like the Big Koala, Big Merino, Ned Kelly and the Dog on the Tuckerbox, we were blown away by the sheer amount of smoke that was hanging in the 40-degree heat that soaked the countryside. A red/pink sun beat down on the dry land below as we tried to take photos to do justice of this apocalypse.

I hadn’t realised until I did a Google searched for “are these fires as big as previous”, did I find an article on the Guardian Australia website answering those exact questions. I didn’t appreciate while working out of the country that Australia was going to open the world’s biggest coal mine while its own countryside was burning. I do accept that expanding economies like India have the right to also grow, however, we could develop technology around energy supply in parallel, using the earnings from those resources.

A green new deal has been proposed recently, but yet time after time people and government focus on short term gains ignoring the longer term.

Why are we not embracing the competitive advantage that our country enjoys with vast amounts of natural resource and thinking about the endless possibilities that this provides for the future generations?

I moved from gas-guzzling F1 to the new Formula electric (Formula E) race series because it offers a pathway to change how we move & travel as a society. Of course, electric vehicles are only zero emissions at the point of use and can rely on electricity grids powered by carbon. Greening the grid is therefore as important a part of the solution as electric mobility.

But there is hope, especially here in Australia as solar energy is something we have in abundance, as well as many brilliant young engineers who could power our national endeavour to take a global leadership position in clean energy. Our ‘over-supply’ of solar energy has the potential to be converted to hydrogen or ammonia to power new transport solutions and we have at our fingertips the potential to move up the supply chain and be a leading supplier of energy without being the world’s coal mine.

My own story convinces me this ambition is possible. I was born in the Ford town of Geelong and quickly fell in love with the automotive industry. I moved to the UK and joined McLaren Formula 1, and in time, set up my own F1 team, but always had a weather eye on a sustainable future and so I supported the spin-out of an electric motor company from Oxford University and in time, I built my own Formula E team. Today Formula E is in its 6th season, enjoys the commitment of ten carmakers and has changed the world both in racing, but is also having a transformative impact on the development of new personal mobility solutions too.

It is not important to revive the automotive industry in Australia. We have advantages in this country and can focus on these strengths; natural resources must be our focus and amongst these agriculture and energy! But we must also look at autonomous driving systems. I am focusing on the potential future of the mobility business which will be dominated by the concepts of connected, autonomous, shared and electric vehicles, and so should you.

History has shown time and time again that long term thinking provides huge gains economically and socially in the future. In his seminal book on the competitiveness of nations, Michael Porter wrote: “A nation’s competitiveness depends on the capacity of its industry to innovate and upgrade” and with the current environmental backdrop, we have two compelling reasons to innovate our way out of a crisis.

This occurs when competition is opened up, with governments opening and supporting innovation in industries that play to the strengths of the country with goals like becoming the world leader in off-highway autonomy, long haul hydrogen vehicles, mining trucks and agriculture and solar power delivering sustainable energy carriers using hydrogen and ammonia concepts.

Australia, wake up to the coming changes in global climate change and embrace the competitive advantages that this fine land has given us and let’s get a grand green new tech deal done!

When Racing and Virtual Reality Collide

Augmented reality has the potential to revolutionise sport, sustainability and transport in megacities. Formula racing is a vibrant, colourful, fast paced sport. Now, something new is set to offer its innovative, immersive motoring experiences to viewers beyond the trackside.

The Oculus Rift is a new virtual reality headset that allows players to step into a game. Or a race. It produces a stereoscopic 3D experience with a huge field of view. The point of this is simple; you don’t see the screen. The technology overcomes resolution and latency problems that have plagued previous virtual reality (VR) headsets, where movement in the game lags behind movement of the head.

“All of us at Oculus Virtual Reality are excited to bring truly immersive VR to people who love video games like we do,” said Palmer Luckey, Founder of Oculus. “Virtual reality has been the long sought after Holy Grail, which most people only ever dreamed of until now. The Oculus Rift is a true game changer that will help make VR the standard for game play in the very near future.”

But I believe that Oculus has potential to deliver more than just immersive gaming and along this avenue my ideas can be how we deal with the lack of engine noise prevalent in current Formula E cars. The phenomenon is something that new F1 engines are struggling with too. VR offers a solution; one that has far reaching implications.

One of the great things with how the season has gone so far is that we have plenty of racing spectacle. Obviously the noise of F1 cars does blow your mind, particularly when you see the race in person, but if you have to rely on the noise to deliver the experience then that’s a problem.

I believe that Formula E can solve this by integrating other experience mechanisms like real time gaming, or VR. Imagine if you could sense enough data from the car and transfer this at the highest rate you can to someone at home and then use that data to truly immerse them in the race. I think that’s the future because ultimately we all want to be more engaged.

The following video shows just what can be done with what we have right now. Although it shows what can be done in American football, it does give you an idea of what can be done in general and apply it to any sport, including formula racing.

I reckon that this is something that can be driven by transferring the experience from the car to the viewer as vividly as possible. If you could feel that experience of driving a Formula E car, possibly through new devices like the Oculus Rift product and the on-car data analysis systems being used in autonomous vehicles, then I think that would really redefine how we experience the sport and make things like sound irrelevant.

And don’t think that car manufacturers are far behind, this is what Jaguar are currently proposing:

Autonomous cars offer tremendous scope for achieving this. They harvest far more data than existing vehicles, and feeding that into the latest VR devices will offer a more absorbing, interactive experience.

My vision hints how Formula E fans across the world could be plugged in to every nuance and twist of a track. Such an experience would have long lasting repercussions in the world of sport, advertising and VR, but could also impact on sustainability now and into the future.

I ran R&D and test teams throughout my F1 career. We were already trying to do data mining back in 1998, but of course the PCs couldn’t handle a lot of the data at that time because they lacked the processing power.

As computing power got bigger we really saw an increase in the level of sensors on the cars. Autonomous vehicles are now sensing an order of magnitude more data in order to feed the artificial intelligence systems that allow them to drive unaided.

Such fast changing technology, where open data and the internet change our world, could solve environmental challenges and offer nifty ways to virtually race. I went off to Silicon Valley five years ago to find out how they were approaching automotive. They were approaching it in a completely different way, with focuses on car-sharing, open-data source journey planners for public and so forth.

My thinking was that if Silicon Valley were going about solving these problems in a particular way, then maybe we were going about it the wrong way. When we started looking at setting up a Formula E team we saw it was relevant for driving innovation of electric powertrains, with applications in electric buses, trains and the traditional road car.

Technology from sport drifts into the mainstream, whether through data led VR or electric road cars. I believe such ideas can lead to true integrated transportation in the megacities of the world. If you put all this together you get a picture of how to solve the whole system.

Transplanting ideas from race track to sustainable city has precedent. When I did my MBA, I learned the effect of ripples through many seemingly disparate markets. There is always cross-pollination of ideas, so long as you’re able to be open minded about similarities.

McLaren’s recent renaming to “McLaren Technology Group” evidences a wider shift among racing companies into sustainability science. This reflects their move into more enterprise focused solutions.

Tomorrow’s world is full of possibilities. Global users might share in a Formula E race via VR, before virtually learning how cars can modify our urban sustainability impacts. Then, they might drive electric vehicles to purchase game consoles, which transmit household energy data back to the web.

Such linked up science need not be an impossible imagining. Indeed, it is limited only by how widely we conceive the future.

Reprinted from Mark Preston’s column Racing to the Future in Motorsport Monday

Winning ways in Buenos Aires

Wow, what a weekend! Amlin Aguri’s first win in the FIA’s first fully electric championship! It is an amazing feeling to get a result after all the work put in by the team over the last three years.

“Luck is when opportunity meets preparation.”

Plus it takes a lot of work to start a new team in a completely new championship – but it’s worth it when all the effort is rewarded! Many people have asked what we did to get to the front, what has changed, how did we do it?

The build up to the race win really started after all of our troubles in Punta del Este.

The series test, on the Sunday after the Punta race, was the first time that Antonio (Felix de Costa) and Salvador (Duran) really had a chance to test the car after Antonio had missed much of the pre-season testing and the first race in Beijing with BMW DTM duties. This, coupled with the fact that race weekends are so short which restricts running, means that when you haven’t got the car in the “zone” it is extremely difficult to do anything meaningful with regard to setup or finding solutions.

Our race pace has been quick from the beginning with Takuma setting the fastest lap in Beijing. So what we were looking for was time to get a proper qualifying setup and thereby increase our race pace accordingly. You must remember that if we hadn’t had an issue during the pit stop in Malaysia, then Antonio could have finished in the top five and potentially on the podium. The engineers worked over the break between Beijing and Putrajaya and then over Christmas before Punta to get our models and understanding of the car to a point that we could validate this understanding during the Punta test. The result was a fastest first sector on the final run of the day before a Red Flag which showed that we were going in the right direction for the next race in Buenos Aires.

Antonio arrived in BA with a quietly confident attitude focussed on making the best of our great Punta test and determined to have a great weekend: everyone arriving on a high and following through is a good indicator of the picture of the weekend.

So how did the weekend go? Well in Free Practice 1 the car was quick straight of the box. There was good work carried out during the session, getting everything done that was on the plan; another good step. Some cars were running maximum qualifying power; hence the large gap at the front of the pack but P9 was respectable, showing of potential to come.

Then in FP2, it was maximum at- tack, our final preparation before qualifying and we were immediately quick with our final position of P3 only 0.4s off the leader which showed that our ultimate potential for qualifying and race performance was within reach.

Qualifying is always a lottery. Antonio drew Q1 while Salvador was in Q3. The elusive Q4 without red or yellow flags is the name of the game with a rubbered-in track and potentially better track temperatures, but we made the most of the quicker car and got ourselves in the top 10. Antonio felt it was better to aim for a top 10 position and wait to see how things went in the race instead of necessarily going for pole and having a problem. Starting P7, 0.5s from pole position showed again that we were in the right place for the race.

The race was quite chaotic, but Antonio and Salvador drove sensibly, both overtaking a number of drivers and making the best of battles going on around them. As the race went on we had a great pit stop which resulted in gaining positions for Antonio and a safety car which caused some confusion with everyone waiting for the screens to update with the final order to be clear.

As we moved up the leader board it became more and more stressful for everyone in the garage as there was more to lose with each increment Antonio gained! By the time he was in a podium position, the tension was showing on everyone’s faces! And as each problem happened on track we were increasingly on the edge of our seats! Salvador was also making up places and looked like he would get into the points as well.

At that stage we could see that Antonio had plenty of battery life left over and
he was therefore in a great position to push all the way to the end of the race and catch Nick Heidfeld before the chequered flag. When the drive-through came for Nick we almost couldn’t believe it, we just had to hold our breath and bite our nails till the end of the race.

Some people might say that there was some luck involved, but you can bring up many old adages about finishing first that you must first finish, and that goes for every element of the car, our team work, the car setup, the drivers’ management of the car’s batteries, the control systems, our pit stop practice and also how the other teams run their cars. Every part of a team is important and we have proven in previous races that we too could have technical problems such as electronic control systems with Takuma at the first race and pit stop problems that cause issues.

Were we lucky?

Luck is when opportunity meets preparation,and we certainly had the pace to take the opportunities delivered to us over the weekend.

Whats next? Miami, where we should make some improvement on all aspects of the team operation, the car setup, our race strategy and some driver training. We have the pace and now it is a matter of building on success and doing a better job at each race and chipping away at the championship points to move ourselves up the grid. After all we love a challenge; otherwise we wouldn’t have entered such a unique and brand new championship!

Following my last column I have been very interested in the questions that we are being asked in our pre-race press conferences, especially at Buenos Aires where they are big fans of motorsport. One of the most common topics was, ‘how will the technology find its way into the world?’ The best example I could see was the bus rapid transit system they have in the city which is a great example of where electric drive, regenerative systems and wireless charging will find its way quickly into practical everyday applications.

You should remember that Uruguay generates 45% of their electricity from hydro
with a target of 90% in 2015 coming from renewables. The intermittent nature of some renewables will benefit from the “Energy Cloud” that will be created when more electric vehicles connect to the network and allow off line storage in the night for solar and during low wind conditions for wind.

Reprinted from Mark Preston’s column Racing to the Future in Motorsport Monday

Randomness and Excitement – Part II

As a follow on to my blog last year where I discussed how randomness drives excitement in F1, the first few races of 2011 certainly provided some interesting racing with KERs, DRS and Pirelli providing a set of variables that the teams have not yet completely mastered.

However as I was watching the German GP recently I noticed how the number of different tyre strategies is starting to narrow.

It is inevitable that the engineers will eventually remove some of the biggest unknowns in tyre prediction.  It was interesting to hear Mark Webber comment that Sebastian had mastered the tyres more quickly than he had.  As the teams simulators start to match the reality of the track, drivers like Mark will be able to experiment back at base to coach themselves to make the best use of the tyres.  At this point the number of variables will again narrow reducing randomness in strategy.

In fact the German GP gave a few more ideas about how the teams might be combining the simulators with drivers and strategy software.  The first hint came when Alonso said over the radio that Webbers tyres were starting to drop off and requested an update of the strategy to reflect this change.  This shows that the teams models are starting to get quite accurate but they still need an empirical “trigger” or tipping point where the driver helps to recognise a change in the tyres that the engineers can use to re-correlate their models real-time.  Once this correlation has been done the strategies can be updated with more accurate information for predicting forward.

The cold track temperatures at the German GP seemed to favour the McLarens and they were able to predict the change point of the tyres for last stint to perfection.  If the tyre performance curve can be mapped accurately there should not be any benefit from what people are calling the “undercut” as this performance anomaly should be accounted for accurately in any strategy software: leading to no advantage or randomness.  Lets see how their models fair in the hotter temperatures in Hungary.

The DRS works in combination with the randomness generated by the tyres.  Theoretically if the fastest car leads from the front there should be no need for DRS.  But, as the tyres provide unpredictable performance variations on each car and with each driver the DRS allows cars to pass each other should one team/driver be lucky enough to find themselves with a different performance envelope in the race in comparison to qualifying.

Again, as the tyres become more understood the randomness of the race vs qualifying performances will become less and DRS will become less of an exciting tool.

Hopefully the tyres change at a faster rate than the teams can match with their understanding!

Simple Vehicle Simulation

When I first started in motor sports we didn’t have a data logger and being curious I thought the only way to learn more about how the car worked on the track was to write a simulation.  Again, at the time, there wasn’t much information about this sort of thing so I had to start from scratch.  My correlation was simply asking the driver to remember RPM in different corners and at the end of different straights!

The tracks were created from aerial photos (not from Google, I had to buy them!) correlated against track distance stated in the program of the race.  I then traced the tracks into AutoCAD and created a DXF driving line.  The first simulations were simply straights and corners.  Why was this accurate enough for the first development stages?  The answer lies in simple integration of a parabola.  You can use algebra to solve for the area under the curve, or you can do a number of approximations based on numerical methods.  Best to look again at High School maths to prove this one to yourself.

The first simulation was based on distance as the integration variable.  So each solution step was variable in length: I typically used 1m steps.  This dictated the basic formulae that were used for the simulation

V^2 = U^2 + 2as

where

V=final velocity of each step

U = initial velocity of each step

a = acceleration

s = distance (or step size for this simulation)

F (longitudinal) = m . a

where

F = force: from engine torque, drag from tyres and drag from aerodynamics.  There will have to be a simple gearbox included as well.

m = mass

a = solve for acceleration to put into the first formula

The we simply have some limits on how fast the car can traverse a given corner of radius R.  We get that formula from centrifugal acceleration.

F (lateral) = m . V^2 / R

where

V = the constant maximum speed around a given corner

R = the radius of the corner

m = is the mass of the vehicle

Hold on, we need to solve for the maximum speed around a given corner.  So one last formula, one that tells us what the maximum force can be.  Force is proportional to the vertical load and the grip.

F(Lateral) = mu . N

where

N = vertical force.  This is proportional to the downforce of the vehicle and its mass.  Another important thing you will notice here is the ratio between the downforce and the mass: notice particularly that the downforce is non inertial.  What I mean is that you get more corner speed for free!  This is a very important fact in motor racing.

mu = friction coefficient.  Probably one of the most complicated variables in our simulation and one that would require a PhD and lots of engineers, or perhaps an entire Formula One team to solve.  Mu is proportional to road surface, temperature of the tyres, their compounds,  constructions and running pressures, just to name a few.  Stick with using 1 to start with!

Thats the basic formulae required for writing a simulation, everything else relates to how accurate you can get all of the unknown variables as they effect aerodynamics, tyres etc.

So why did I go to all this trouble to explain how a simple simulation works?  It has a direct effect on your understanding of the 1st order performance drivers of motorsports performance:

  • Engine (power) is proportional to the acceleration (a) variable, DIRECTLY.
  • Aerodynamic downforce is DIRECTLY proportional to the normal force (N)
  • Aerodynamic drag is DIRECTLY proportional to the longitudinal force (F) and engine power (F)
  • Tyres grip (mu) is DIRECTLY proportional to the maximum lateral force in a corner

How do the second order variables effect the car?  Wait for the next blog post coming soon…

First Order Performance Drivers

What are the drivers performance in motor racing?

Lets start with Newtons Laws of Motion:

  1. In the absence of force, a body either is at rest or moves in a straight line with constant speed.
  2. A body experiencing a force F experiences an acceleration a related to F by F = ma, where m is the mass of the body. Alternatively, force is equal to the time derivative of momentum.
  3. Whenever a first body exerts a force F on a second body, the second body exerts a force −F on the first body. F and −F are equal in magnitude and opposite in direction.

How do they relate to motor racing?

F = Force

Force is one of the most important aspects of going fast!  Force comes from a number of areas:

  1. Engine – the force that is transmitted to the wheels to accelerate the mass of the vehicle comes from the torque that is created.
  2. An equal and opposite force is reacted on the vehicle as it goes round a corner which comes from the grip of the tyres on the road.
  3. Downforce coming from the aerodynamics of the vehicle
  4. Drag which is part of aerodynamics resists the car traveling through the air, which relates directly to the first law above
  5. Tyre drag is another force opposing forward motion

Mass, another important one, but most racing series stopped engineers reducing mass beyond a certain level long ago!  Otherwise engineers would have kept going.  So mass used to be a first order performance driver in most racing but was removed as a variable.  Now it is part of the second order drivers of performance, not directly effecting a basic law of physics, but effecting things like dynamics and handling.

Another important law of physics is Coulomb friction: F = mu . N

In motorsports grip is associated with mu.  Mu is proportional to a number of factors such as surface, tyre compound, temperature and load fluctuations just to name a few.  What you will notice is that N is directly proportional to downforce and mu is proportional to the performance of the tyre.

So we find that the three main first order performance drivers in motorsports are (in no particular order):

  • aerodynamics
  • engine
  • tyres (tires)

Innovation in F1 – Part 1

There is a lot of talk in the business press regarding innovation and how critical it is to western countries, keeping our lead in the world economy. Growth is driven by innovation and I thought it would be worth having a look at innovation in the context of motorsports.  Below is a classic graphic showing the three phases of innovation: product, process and strategic.

Rate of Innovation

Where is F1 currently?

I hypothesize that F1 is in the final stages of the process innovation: hopefully to be followed by the strategic innovation stage, most likely driven by the economic crisis and the withdrawal of many of the automotive giants that have driven the process innovation that has characterised the last 10-15 years.

So which era of Formula One characterised the product innovation stage?

First it is worth noting what drivers performance in motor racing.  First order drivers of performance come from the areas that most closely effect the basic laws of physics such as Newtons laws of motion.

Initially innovation focussed on engines.  Enzo Ferrari was one of the people who focussed most on engines and throughout his leadership of the company this is where the focus remained.  It wasn’t until the 60’s when vehicle dynamics started to become seen as important with the move towards rearward engines.  Without performing a large analysis on the subject his is most likely because of the changing engine efficiencies: smaller more efficient engines meant that they were no longer the dominant part of the vehicle from a weight and size point of view.

The fact that aerodynamics and tyres required much more complex methods of understanding meant that they came a lot later in the innovation cycle.  Aerodynamics was the next area that began to show promise with the introduction of wings.  This brought with it a huge boom in innovation.  Wings sprouted allover the place.  To take this to extremes Gordan Murray even introduced a fan car that was created downforce directly proportional to the fan!  Most innovations were banned or controlled but innovation keep moving on.

Perhaps the next big area of innovation was active suspension.  This innovation came when engineers realized that the car was also just one big wing with floors running so close to the ground they had become venturis.  This innovation continued for a while but again it had to be controlled as the performance coming from these innovations was spiraling out of control!

Motor Manufacturers

Then came the motor manufacturers.  I mean the big ones, not Ferrari, which has always been what I would call a stand alone sports car manufacturer, even though is owned by Fiat.  I think Fiat simply provides stability.

The motor manufacturers I am talking about are the bigs ones: Honda, Toyota, Renault, Mercedes Benz, Ford and BMW.  Only one remains when this blog was posted: Mercedes Benz.  Their entry into the sport really started at the end of the 90’s when Ford began to take over Stewart Grand Prix.  Renault followed in 2000, Honda took over Tyrell, Mercedes started investing in McLaren, Toyota started from scratch and BMW began to try to work closer with Williams.

The car companies did a few things, one of which was to bring more rigor to F1: just look at how reliability increased over the last 10 years.  I recently presented to a conference on carbon composites and showed a simple explanation of what happened when rigor is introduced into a sport.

Technology Readiness Levels and Motorsports

I found that NASA’s Technology Readiness Levels (TRL) were the best way of describing the changes that had happened in Formula One.  The technology readiness levels are supposed to be used to describe new innovations and their stage in development: everything from Blue Sky research to developments that are fully ready for integration into mainstream commercial activities.

The slide was used to compare motor racing to aerospace and most of the explanation came down to the differences in risk taking.  This got me thinking about what effect the motor manufacturers  (OEM’s) have had on the sport and I decided that part of it was the rigor that aerospace and OEM’s need for selling products.  This got me thinking about process innovation as this rigor is mostly about better quality, more certainty and less risk.  So the TRL graphic highlighted this fact, especially when compared to the old days of Lotus and Brabham!  In F1 history, many of the engineers would come up with concepts at the track and they would be on the car in a matter of hours!  This was real Blue Sky territory, albeit at the expense of rigor, which I believe then brought reliability.

Part 2: Process innovation.  Coming soon…